Consumer Confidence Report

Data for January 1, 2012 through December 31, 2012

1 Olivenhain Municipal Water District

Municipal Water District

A Public Agency Providing

Water

Wastewater Services

Recycled Water

Hydroelectricity

Elfin Forest Recreational Reserve

Olivenhain Municipal Water District (OMWD) is required by law to distribute a Consumer Confidence Report each year.

This report explains how drinking water provided by OMWD meets or exceeds all state and federal water quality standards for your drinking water. Included within are results of water quality tests, tips on how to interpret the data, and an explanation of where your water comes from. The data presented is for January 1 through December 31, 2012. We are proud to share our results with you.

Your Water Sources

OMWD's raw water supply is 100% imported. In 2012, an average of 63% was received from the California State Water Project (Sacramento-San Joaquin Bay-Delta) and 37% from the Colorado River. These sources, supplying water to all of Southern California, rely on runoff from the Sierra snowpack and the Colorado River Basin. Both of these supplies are provided to OMWD from Metropolitan Water District of Southern California (MWD) and the San Diego County Water Authority (SDCWA).

to you, it must be treated to remove pollutants and bacteria. OMWD delivers water that has been treated at one of three sources: the David C. McCollom Water Treatment Plant (DCMWTP), MWD's Skinner Water Treatment Plant, and SDCWA's Twin Oaks Valley Water Treatment Plant.

Before water from these sources is delivered

David C. McCollom Water Treatment Plant

In 2012, approximately 68% of the water delivered to OMWD customers was treated locally at the DCMWTP. The raw water received at the DCMWTP is a blend of water from the Colorado River and the State Water Project. This raw water is obtained from SDCWA, which purchases it from MWD.

The DCMWTP is located within the northeastern portion of OMWD's service area and uses membrane technology to produce superior quality finished water. Fewer chemicals are used in this treatment process than in conventional treatment, and the membrane process offers improved barriers against pathogens such as *Cryptosporidium* and bacteria

such as coliform. OMWD provides tours of the DCMWTP throughout the year; contact the Education and Conservation Coordinator for details at watersaver@olivenhain.com.

Skinner and Twin Oaks Valley Water Treatment Plants

The remaining 32% of the treated water delivered to OMWD customers in 2012 was obtained from SDCWA. In addition to treating water locally at SDCWA's Twin Oaks Valley WTP in San Marcos, SDCWA purchases treated water from MWD that is treated at the Skinner Water Treatment Plant in southwestern Riverside County. Like water treated at the DCMWTP, water treated by SDCWA and MWD is also a blend from the Colorado River and the State Water Project.

What Is in My Water?

There are two tables on the following pages. The first table shows how water treated at Skinner, Twin Oaks Valley, and the DCMWTP met health-related standards in 2012. A separate table is provided that includes data specific to the water that flows through OMWD's distribution system. For information on the Lake Skinner source water and a source water assessment, please contact Mic Stewart with MWD at 213-217-5696. For more information on the Twin Oaks Valley Water Treatment Plant, please contact Tim Suydam with SDCWA at 760-233-3283. For more information on the DCMWTP or OMWD's distribution system, please contact Tom Kennedy at 760-445-0000.

How Do Contaminants Get in the Water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application and septic systems
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the

California Department of Public Health (CDPH) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. CDPH regulations also establish limits for contaminants in bottled water that provide similar protection for public health.

What About Lead and Copper?

OMWD is required to test every three years for lead and copper. OMWD tested for lead and copper in 2011; 30 locations were sampled. The results, which were well below regulatory action levels, are provided in the table on page 5. Additional information about lead and copper is available from the USEPA Safe Drinking Water Hotline, 800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. OMWD is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Important Health Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily

indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline, **800-426-4791**.

The trace contaminants found in OMWD's water sources, along with their standards, are listed in the tables found in this report. It is important to note that drinking water standards are based on research to protect the general public and may not be sufficient to protect certain persons, as noted below.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, as well as some elderly and infants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Center for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the USEPA's Safe Drinking Water Hotline, 800-426-4791.

Water Treatment Plant Data

PERCENT STATE PROJECT WATER Skinner, Twin Oaks Valley & David C. McCollom WTPs

Range = 33% - 84%

Average = 63%

PRIMARY STANDARIOS - Nanotatory Hosibheriostact Binarios Conference Conferenc	water freatment Plant Data					Skinner WTP		Twin Oaks Valley WTP David C. McCollom WTP				Range = 33%-84% Average = 63%		
Combined Files Therefore The Principle	Parameter	Units	State or Federal MCL [MRDL]		State DLR	Range	Average	Range	Average	Range	Average	Major Sources in Drinking Water		
Combined Right Effective Trunching No. T.T No.	PRIMARY STANDARDS - Mandatory He	ealth-Rela	ted Standard	is										
Commence	CLARITY													
Miles Mile	Combined Filter Effluent Turbidity	NTU		NA	NA	Highest					% ≤ CL	Soil runoff		
Trial Coliforn Besterie** S. 5.0 (0) N. N. N. N. N. N. N. N	·	%				0.06	100	0.04	100	0.08	100			
E. Col		0/-	F.O.	(0)	NΙΔ	ND 0 E	0.1	ND	ND	ND	ND	Naturally precent in the environment		
National present in the environment National present in the environment												, .		
Note														
Arsenic	· · · · · · · · · · · · · · · · · · ·	CI O/IIIL	11	IVA	INA	11	11	11	11	11	11	ivaturally present in the environment		
Principle Prin		nnh	10	0.004	2	ND	ND	ND A	3.6	NDΛ	3 7	Frecion of natural denocite, glace and electronics production wastes		
No. Runoff and leaching from fertilizer use; septic tank and sewage; record of netword eposits.				1										
## ADDITION OF THE CONTROL OF THE CO	ridoride (treatment-related)	ррпп	2.0	1	0.1									
Grass Alpha Particle Activity*	Nitrate (as N) ^(f)	ppm	10	10	0.4	ND	ND	0.3-0.5	0.4	NRA	ND	erosion of natural deposits		
Gross Beta Particle Activity ¹⁰⁰ pC/L 50 (0) 4 ND-5 ND 3.4-3.5 3.4 NRA ND Decay of natural and man-made deposits Redition-128 pC/L NA 0.019 1 ND ND ND ND ND NRA 1.2 Evosion of natural deposits Training Membranes (Thirty) ¹⁰¹ ppb 80 NA 1.0 10-19 14 28-75 43 22.5-48.2 36.4 8y-product of drinking water chlorination Training Membranes (Thirty) ¹⁰² ppb 60 NA 1.0 10-19 14 28-75 43 22.5-48.2 36.4 8y-product of drinking water chlorination Training Membranes (Thirty) ¹⁰³ ppb 60 NA 1.0 1.2-61 10-17 17 Tr Tr Tr Tr Tr Tr Tr T	RADIOLOGICALS			1										
Redum-228	Gross Alpha Particle Activity	pCi/L	15	(0)	3	ND-3	ND	ND	ND	NRA	ND	Erosion of natural deposits		
Usanium	Gross Beta Particle Activity ^(g)	pCi/L	50	(0)	4	ND-5	ND	3.4-3.5	3.4	NRA	ND	Decay of natural and man-made deposits		
DISINFECTION BY-PRODUCTS DISINFECTIANT RESIDUALS AND DISINFECTION BY-PRODUCT PRECURSORS	Radium-228	pCi/L	NA	0.019	1	ND	ND	ND	ND	NRA	1.2	Erosion of natural deposits		
Total Trihalomethanes (TTHM)*** ppb 60 NA 1.0 10-19 14 28-75 43 22.5-48.2 36.4 89-product of drinking water chlorination Haladacetic Acids (five) (HAAS)*** npb 60 NA 1.0 1.4-6.1 2.7 ND-5.3 3.7 1.1-12.8 10.9 89-product of drinking water chlorination 10-19 14-6.1 1.0 1.4-6.1 1.0 1.2-11 10-19 1.0 1.2-11 10-19 1.0 1.2-11 10-19 1.0 1.2-11 10-19 1.2-11 10	Uranium	pCi/L	20	0.43	1	ND-2	1	1.0-1.7	1.3	NRA	1.4	Erosion of natural deposits		
Haloacetic Acids (five) (HAAS) April Ap	DISINFECTION BY-PRODUCTS, DISINFECTION	CTANT RE	SIDUALS AN	D DISINFEC	CTION B	/-PRODUCT	PRECURSOR	RS						
Total Chlorine Residual	Total Trihalomethanes (TTHM) ^(h)	ppb	80	NA	1.0	10-19	14	28-75	43	22.5-48.2	36.4	By-product of drinking water chlorination		
Part	Haloacetic Acids (five) (HAA5) ^(h)	ppb	60	NA	1.0	1.4-6.1		ND-5.3		1.1-12.8		By-product of drinking water chlorination		
Bromate	Total Chlorine Residual	ppm	[4.0]	[4.0]	NA	1.5-2.8		NA	NA	1.51-3.03		Drinking water disinfectant added for treatment		
DBP Precursors Control (TOC) ⁽¹⁾ ppm	Bromate	ppb	10	0.1 (5)	1.0	1.2-11	Highest RAA 6.5	(1.6-9.1)	Highest RAA (3.5)	NRA		By-product of drinking water ozonation		
Chloride	DBP Precursors Control (TOC)(i)	ppm	TT		0.30	Π	П	TT		2.3-2.9	2.5	Various natural and man-made sources		
Color	SECONDARY STANDARDS - Aesthetic	Standards												
Odor Threshold ⁽ⁱ⁾ TON 3 NA 1 1-2 2 NRA 1 NRA 2 Naturally occurring organic materials Specific Conductance µS/cm 1,600 NA NA 440-780 640 NRA 640 NRA 680 Substances that form ions in water; seawater influence ppm 500 NA 0.5 96-120 110 NRA 96 NRA 110 Runoff/leaching from natural deposits; industrial wastes Total Dissolved Solids (TDS) ppm 1,000 NA NA 360-400 380 NRA 370 NRA 410 Runoff/leaching from natural deposits; seawater influence OTHER PARAMETERS - Chemical Alkalinity ppm NA NA NA 75-110 93 NRA 92 NRA 97 Boron ppm NA NA NA 100 130 130 NRA 140 NRA 140 Runoff/leaching from natural deposits; seawater influence Calcium ppm NA NA NA 34-41 38 NRA 37 NRA 42 Chlorate ppb NL = 800 NA 20 NRA 50 190-280 218 NA NA By-product of drinking water chlorination; industrial processes Corrosivity ⁽ⁱ⁾ (as Aggressiveness Index) AI NA NA NA 0.35-05 0.42 NRA 12 NRA 13 Elemental balance in water; affected by temperature, other factors Corrosivity ⁽ⁱ⁾ (as Saturation Index) SI NA NA NA NA 15-17 16 NRA 16 NRA 18 PH PH Units NA NA NA NA 15-17 16 NRA 16 NRA 18 Potassium ppm NA NA NA NA 15-17 16 NRA 16 NRA 18 Potassium ppm NA NA NA NA 15-17 16 NRA 16 NRA 18 Potassium ppm NA NA NA NA 18-8.5 8.3 NRA 7.8 NRA 7.8 Potassium ppm NA NA NA NA NA 18-8.5 8.3 NRA 7.8 NRA 7.8 Potassium ppm NA NA NA NA NA 18-8.5 8.3 NRA 7.8 NRA 7.8 Potassium ppm NA NA NA NA NA 15-17 NA NA NA NA NA 15-17 NA NA NA NA 15-17 NA NA NA NA NA NA 15-17 NA NA NA NA 15-17 NA	Chloride	ppm	500	NA	NA	75-77	76	NRA	78	NRA	81	Runoff/leaching from natural deposits; seawater influence		
Specific Conductance μS/cm 1,600 NA NA 440-780 640 NRA 640 NRA 680 Substances that form ions in water; seawater influence	Color	Units	15	NA	NA	1	1	ND	ND	NRA	3	Naturally occurring organic materials		
Sulfate	Odor Threshold(i)	TON	3	NA	1	1-2	2	NRA	1	NRA	2	Naturally occurring organic materials		
Total Dissolved Solids (TDS)	Specific Conductance	μS/cm	1,600	NA	NA	440-780	640	NRA	640	NRA	680	Substances that form ions in water; seawater influence		
OTHER PARAMETERS - Chemical Alkalinity ppm NA NA NA 75–110 93 NRA 92 NRA 97 Boron ppb NL = 1,000 NA 100 130 130 NRA 140 NRA 140 Runoff/leaching from natural deposits; industrial wastes Calcium ppm NA NA NA 34–41 38 NRA 37 NRA 42 Chlorate ppb NL = 800 NA 20 NRA 50 190–280 218 NA NA By-product of drinking water chlorination; industrial processes Corrosivity ⁽⁶⁾ (as Aggressiveness Index) AI NA NA NA 12.2 NRA 12 NRA 13 Elemental balance in water; affected by temperature, other factors Corrosivity ⁽⁶⁾ (as Saturation Index) SI NA NA NA NA 120–220 170 NRA 160 NRA NS Elemental balance in water; affected by temperature, other factors Hardness ppm	Sulfate	ppm	500	NA	0.5	96-120	110	NRA	96	NRA	110	Runoff/leaching from natural deposits; industrial wastes		
Alkalinity ppm NA NA NA NA 75–110 93 NRA 92 NRA 97 Boron ppb NL = 1,000 NA 100 130 130 NRA 140 NRA 140 Runoff/leaching from natural deposits; industrial wastes Calcium ppm NA NA NA NA 34–41 38 NRA 37 NRA 42 Chlorate ppb NL = 800 NA 20 NRA 50 190–280 218 NA NA By-product of drinking water chlorination; industrial processes Corrosivity ^(k) (as Aggressiveness Index) AI NA NA NA 12.2–12.3 12.2 NRA 12 NRA 13 Elemental balance in water; affected by temperature, other factors Corrosivity ^(l) (as Saturation Index) SI NA NA NA NA 0.35–0.50 0.42 NRA 0.24 NRA NS Elemental balance in water; affected by temperature, other factors Hardness ppm NA NA NA NA 120–220 170 NRA 160 NRA 180 Magnesium ppm NA NA NA NA 15–17 16 NRA 16 NRA 18 Ph H Units NA NA NA NA 15–17 16 NRA 16 NRA 18 Potassium ppm NA NA NA NA 3.4–3.6 3.5 NRA 7.8 NRA 7.8 Potassium ppm NA NA NA NA NA 65–66 66 NRA 68 NRA 71 Total Organic Carbon (TOC) ppm TT NA 0.30 1.8–2.3 Highest RAA 2.1 2.0–3.3 Highest RAA 2.7 2.9 Highest RAA 2.7 2.7 Various natural and man-made sources NA NIL = 10 3 2 NR 2 NRA Single Sample NA NIL = 10 3 2 NRA Single Sample NA Single Sample	Total Dissolved Solids (TDS)	ppm	1,000	NA	NA	360-400	380	NRA	370	NRA	410	Runoff/leaching from natural deposits; seawater influence		
Boron ppb NL = 1,000 NA 100 130 130 NRA 140 NRA 140 Runoff/leaching from natural deposits; industrial wastes Calcium ppm NA NA NA NA 34-41 38 NRA 37 NRA 42 Chlorate ppb NL = 800 NA 20 NRA 50 190-280 218 NA NA By-product of drinking water chlorination; industrial processes Corrosivity ⁽⁶⁾ (as Aggressiveness Index) AI NA NA NA NA 12.2-12.3 12.2 NRA 12 NRA 13 Elemental balance in water; affected by temperature, other factors Corrosivity ⁽⁶⁾ (as Saturation Index) SI NA NA NA NA 120-220 170 NRA 160 NRA 180 Magnesium ppm NA NA NA NA 15-17 16 NRA 16 NRA 18 PH Units NA NA NA NA NA 15-17 16 NRA 16 NRA 18 Potassium ppm NA	OTHER PARAMETERS - Chemical													
Description	Alkalinity	ppm	NA	NA	NA	75-110	93	NRA	92	NRA	97			
Chlorate ppb NL = 800 NA 20 NRA 50 190-280 218 NA NA By-product of drinking water chlorination; industrial processes Corrosivity(*) (as Aggressiveness Index) AI NA NA NA NA 12.2-12.3 12.2 NRA 12 NRA 13 Elemental balance in water; affected by temperature, other factors Corrosivity(*) (as Saturation Index) SI NA NA NA NA NA 120-220 170 NRA 160 NRA 180 Elemental balance in water; affected by temperature, other factors NA NA NA NA 120-220 170 NRA 160 NRA 180 Elemental balance in water; affected by temperature, other factors NA NA NA NA NA 15-17 16 NRA 16 NRA 18 PH Units NA NA NA NA NA 15-17 16 NRA 16 NRA 18 NRA 7.8 NRA	Boron	ppb	NL = 1,000	NA	100	130	130	NRA	140	NRA	140	Runoff/leaching from natural deposits; industrial wastes		
Corrosivity(%) (as Aggressiveness Index) AI NA NA NA 12.2–12.3 12.2 NRA 12 NRA 13 Elemental balance in water; affected by temperature, other factors of the corrosivity(%) (as Saturation Index) SI NA NA NA NA 0.35–0.50 0.42 NRA 0.24 NRA NS Elemental balance in water; affected by temperature, other factors of the corrosivity(%) (as Saturation Index) SI NA NA NA NA 120–220 170 NRA 160 NRA 180 Magnesium ppm NA NA NA NA 15–17 16 NRA 16 NRA 18 pH Units NA NA NA NA 8.1–8.5 8.3 NRA 7.8 NRA 7.8 Potassium ppm NA NA NA NA NA 3.4–3.6 3.5 NRA 3.5 NRA 3.6 Sodium ppm NA NA NA NA NA NA 65–66 66 NRA 68 NRA 71 Total Organic Carbon (TOC) ppm TT NA 0.30 1.8–2.3 Highest RAA 2.1 2.3–2.9 Various natural and man-made sources Vanadium NA NA Single Sample	Calcium	ppm	NA	NA	NA	34-41	38	NRA	37	NRA	42			
Corrosivity(*) (as Saturation Index) SI NA NA NA 120-220 170 NRA 160 NRA 180 Magnesium ppm NA NA NA NA 15-17 16 NRA 16 NRA 18 pH Units NA	Chlorate	ppb	NL = 800	NA	20	NRA	50	190-280	218	NA	NA	By-product of drinking water chlorination; industrial processes		
Hardness	Corrosivity ^(k) (as Aggressiveness Index)	AI	NA	NA	NA	12.2-12.3	12.2	NRA	12	NRA	13	Elemental balance in water; affected by temperature, other factors		
Magnesium ppm NA NA NA 15-17 16 NRA 16 NRA 18 pH pH Units NA 7.8 NRA 7.8 Potassium ppm NA NA NA NA 3.5 NRA 3.6 Sodium ppm NA NA NA 66 NRA 68 NRA 71 Total Organic Carbon (TOC) ppm TT NA 0.30 1.8-2.3 Highest RAA 2.1 2.0-3.3 Highest RAA 2.4 2.3-2.9 Highest RAA 2.7 Various natural and man-made sources Vanadium ppb NL = 50 NA 3 ND ND NRA ND NRA 12 Naturally-occurring; industrial waste discharge NA-Nitrosodimethylamine (NDMA) ppt NL = 10 3 2 ND-2.8 Single Sample NA Single Sample NA Single Sample NA NA	Corrosivity ⁽¹⁾ (as Saturation Index)	SI	NA	NA	NA	0.35-0.50	0.42	NRA	0.24	NRA	NS	Elemental balance in water; affected by temperature, other factors		
pH Units NA NA NA 8.1–8.5 8.3 NRA 7.8 NRA 7.8 Potassium ppm NA NA NA NA 3.4–3.6 3.5 NRA 3.5 NRA 3.6 Sodium ppm NA NA NA NA 65–66 66 NRA 68 NRA 71 Total Organic Carbon (TOC) ppm TT NA 0.30 1.8–2.3 Highest RAA 2.1 2.0–3.3 Highest RAA 2.7 Various natural and man-made sources Vanadium ppb NL = 50 NA 3 ND ND NRA ND NRA 12 Naturally-occurring; industrial waste discharge	Hardness	ppm	NA	NA	NA	120-220	170	NRA	160	NRA	180			
Potassium ppm NA NA NA NA 3.4-3.6 3.5 NRA 3.5 NRA 3.6 NRA 3.6 Sodium ppm NA NA NA NA 65-66 66 NRA 68 NRA 71 Total Organic Carbon (TOC) ppm TT NA 0.30 1.8-2.3 Highest RAA 2.1 2.0-3.3 Highest RAA 2.4 2.3-2.9 Highest RAA 2.7 Various natural and man-made sources Vanadium ppb NL = 50 NA 3 ND ND NRA ND NRA 12 Naturally-occurring; industrial waste discharge Nellitrosodimethylamine (NDMA) ppt NL = 10 3 2 ND-2.8 Single Sample NRA Single Sample NRA Single Sample Ryaproduct of dripking water chloramination; industrial processes	Magnesium	ppm	NA	NA	NA	15-17	16	NRA	16	NRA	18			
Sodium ppm NA NA NA 65-66 66 NRA 68 NRA 71 Total Organic Carbon (TOC) ppm TT NA 0.30 1.8-2.3 Highest RAA 2.0-3.3 2.1 2.0-3.3 2.1 Vanadium ppb NL = 50 NA 3 ND ND NRA ND NRA 12 Naturally-occurring; industrial waste discharge Nelitrosodimethylamine (NDMA) ppt NI = 10 3 2 ND-2.8 Single Sample NRA Sing	рН	pH Units	NA	NA	NA	8.1-8.5	8.3	NRA	7.8	NRA	7.8			
Total Organic Carbon (TOC) ppm TT NA 0.30 1.8–2.3 Highest RAA 2.0–3.3 Highest RAA 2.3–2.9 Highest RAA 2.3–2.9 Various natural and man-made sources Vanadium ppb NL = 50 NA 3 ND ND NRA ND NRA 12 Naturally-occurring; industrial waste discharge Valitrosodimethylamine (NDMA) ppt NL = 10 3 2 ND=2.8 Single Sample NRA Sin	Potassium	ppm	NA	NA	NA	3.4-3.6	3.5	NRA	3.5	NRA	3.6			
Vanadium ppb NL = 50 NA 3 ND ND NRA ND NRA 12 Naturally-occurring; industrial waste discharge V-Nitrosodimethylamine (NDMA) ppt NI = 10 3 2 ND=2 8 Single Sample NRA Single S	Sodium	ppm	NA	NA	NA	65-66		NRA		NRA				
Vanadium ppb NL = 50 NA 3 ND ND NRA ND NRA 12 Naturally-occurring; industrial waste discharge N-Nitrosodimethylamine (NDMA) ppt NL = 10 3 2 ND=2.8 Single Sample NRA Single Sample NRA Single Sample Ry-product of drinking water chloramination; industrial processes	Total Organic Carbon (TOC)	ppm	TT	NA	0.30	1.8-2.3		2.0-3.3		2.3-2.9	Highest RAA 2.7	Various natural and man-made sources		
	Vanadium	ppb	NL = 50	NA	3		ND		ND	NRA		Naturally-occurring; industrial waste discharge		
	N-Nitrosodimethylamine (NDMA)	ppt	NL = 10	3	2	ND-2.8		NRA		NA		By-product of drinking water chloramination; industrial processes		

Abbreviations & Definitions

AI – Aggressiveness Index

AL - Action Level

CDPH – California Department of Public Health

CFU – Colony-Forming Units

CL - Compliance Limit

DBP – Disinfection By-Products

DLR – Detection Limits for purposes of Reporting

MBAS – Methylene Blue Active Substances

MCL – Maximum Contaminant Level – The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close as the PHGs as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

MCLG – Maximum Contaminant Level Goal – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

MRDL – Maximum Residual Disinfectant Level – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG – Maximum Residual Disinfectant Level Goal – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N – Nitrogen

NA - Not Applicable

ND - Not Detected

NL - Notification Level

NRA – No Running Average – *Single sample collected*

 ${f NTU}$ – Nephelometric Turbidity Units

P or ND – Positive or Not Detected

pCi/L - Picocuries per Liter

PDWS – Primary Drinking Water Standard – MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

PHG – Public Health Goal – The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

ppm - Parts per million or milligrams per liter (mg/L)

ppb – Parts per billion or micrograms per liter ($\mu g/L$)

ppt - Parts per trillion or nanograms per liter
(ng/L)

ppq - Parts per quadrillion or picoograms per liter (pg/L)

RAA – Running Annual Average – Highest RAA is the highest of all Running Annual Averages calculated as average of all the samples collected within a 12-month period

SI – Saturation Index (Langelier)

TOC – Total Organic Carbon

TON - Threshold Odor Number

TT – Treatment Technique – *A required* process intended to reduce the level of a contaminant in drinking water

μS/cm – Microsiemens per centimeter or micomho per centimeter (μmho/cm)

5 Olivenhain Municipal Water District

Distribution Sys	CEII	OMWD Dis	st. System				
Parameter	Units	State or Federal MCL [MRDL]	PHG (MCLG) [MRDLG]	State DLR	Range	Average	Major Sources in Drinking Water
PRIMARY STANDARDS - Manda	tory Hea	Ith-Related S	Standards				
MICROBIOLOGICAL							
Total Coliform Bacteria ^(b)	%	5.0	(0)	NA	0-1.25%	0%	Naturally present in the environment
Fecal Coliform and <i>E. coli</i>	(c)	(c)	(0)	NA	0%	0%	Human and animal fecal waste
Heterotrophic Plate (HPC) ^(d)	CFU/mL	тт	NA	NA	0-100	0.688	Naturally present in the environment
DISINFECTION BY-PRODUCTS AN	D DISIN	ECTANT RE	SIDUALS				
Total Trihalomethanes (TTHM) ^(h)	ppb	80	NA	1	17.4-48.2	Highest RAA 40	By-product of drinking water chlorination
Haloacetic Acids (five) (HAA5) ^(h)	ppb	60	NA	1	1.1-18.7	Highest RAA 13	By-product of drinking water chlorination
Total Chlorine Residual	ppm	[4.0]	[4.0]	NA	1.51-3.03	Highest RAA 2.65	Drinking water disinfectant added for treatment
INORGANIC CHEMICALS							
Copper ^(m) 2011	ppm	AL = 1.3	0.17	0.05	0.01-0.294	90th Percentile 0.245	Internal corrosion of household pipes; erosion of natural deposits
Lead ^(m) 2011	ppm	AL = 0.015	2	5	ND-0.007	90th Percentile ND	Internal corrosion of household pipes; erosion of natural deposits
SECONDARY STANDARDS - Aes	thetic St	andards					
Color	Units	15	NA	NA	ND-6	0.075	Naturally occurring organic materials
Odor Threshold	TON	3	NA	1	ND	ND	Naturally occurring organic materials
Turbidity ^(a)	NTU	5	NA	NA	0-0.9	0.022	Soil runoff

- (a) As a Primary Standard, the turbidity levels of the filtered water were less than or equal to the Compliance Limit of 0.3 NTU for MWD, and 0.1 NTU for SDCWA and OMWD in 95% of the online measurements taken each month, and did not exceed 1 NTU for more than one hour. Turbidity, a measure of the cloudiness of the water, is an indicator of treatment performance. The turbidity levels for grab samples at these locations were in compliance with the Secondary Standard. Per 2012 Consumer Confidence Report Guidance, the state DLR for turbidity is 0.1 NTU.
- (b) Total coliform MCLs: for the distribution system, no more than 5.0% of the monthly samples may be total coliform positive. For MWD, 8,037 samples were analyzed and six samples were positive tor total coliform. For OMWD, 1,062 samples were analyzed and one sample was positive tor total coliforms. The MCL was not violated
- (c) E. coli MCL: The occurrence of two consecutive total coliform-positive samples, one of which contains E. coli, constitutes an acute MCL violation. The MCL was
- (d) For MWD in 2012, all distribution samples collected had detectable total chlorine residuals and no HPC was required. In 2012, OMWD voluntarily tested for HPC in the distribution system 365 times; the range and average is provided.
- (e) MWD was in compliance with all provisions of the state's fluoridation system requirements. OMWD did not fluoridate at the DCMWTP in 2012.
- (f) State MCL is 45 mg/L as nitrate, which is the equivalent of 10 mg/L as N.
- (9) CDPH considers 50 pCi/L to be the level of concern for beta particles; the gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total
- (h) TTHM & HAA5 results for water treatment plant effluent as well as OMWD's distribution system are provided. In 2012, MWD, SDCWA, and OMWD were in compliance with all provisions of the Stage 1 and Stage 2 Disinfectants/Disinfection By-Products Rules (D/DBP). Stage 2 D/Dbpr monitoring began in the second guarter of 2012. Compliance was based on the RAA.
- (i) TOC provides a medium for the formation of DBPs, MWD and OMWD were also in compliance with the DBP precursor (TOC) control portion of the Stage 2 D/DBP regulation. For MWD, average and range for TOC were taken from weekly samples collected at the combined filter effluent. Samples were collected monthly for the DCMWTP.
- (i) In May 2012, monitoring frequency for Skinner was reduced from quarterly to annual when RAA returned to <3 TON. Per CDPH requirements, quarterly monitoring was conducted following a secondary MCL exceedance in April 2008.
- (k) AI <10.0 = Highly aggressive and very corrosive water. AI >12.0 = Non-aggressive water. AI (10.0-11.9) = Moderately aggressive water
- (1) Positive SI index = non-corrosive; tendency to precipitate and/or deposit scale on pipes. Negative SI index = corrosive; tendency to dissolve calcium carbonate.
- (m) Lead and copper are regulated as a Treatment Technique under the Lead and Copper Rule, which requires water samples to be collected at the consumers' tap. If action levels are exceeded in more than 10% of the consumer tap samples, water systems must take steps to reduce these contaminants. OMWD collected samples in 2011; results are provided.

Fluoride and Your Drinking Water

Though fluoride is naturally present in some quantities in all of San Diego County's water sources, no additional fluoride was added to water treated by OMWD at the DCMWTP in 2012. OMWD did receive in 2012 a small portion of its treated drinking water from MWD and SDCWA, which is fluoridated. As a result, OMWD customers received a blended mix of fluoridated and non-fluoridated water.

California law—Health & Safety Code §§116409-116415—requires all public water systems to fluoridate their water once funds become available. OMWD will begin fluoridating its water on July 1, 2013.

Additional information about fluoridation at Olivenhain Municipal Water District is available at olivenhain.com/fluoride. Customers interested in fluoridation may also wish to visit CDPH's fluoridation website, where more information about fluoridation, oral health, and current issues is available: www.cdph.ca.gov/certlic/drinkingwater/pages/fluoridation.aspx.

Do I Need a Water Softener?

Water is considered hard when it contains high concentrations of calcium and magnesium. Though the presence of these minerals may make lathering with soap difficult or leave spots on dishes, hard water is safe to drink. These minerals can be reduced using softeners, although the reduction of these minerals does not provide any health benefits.

OMWD's potable water is imported from Northern California and the Colorado River. Due to the long distances of travel before this water reaches your tap, evaporative losses increase the hardness of the water.

As a result, the water delivered by OMWD is considered to be quite hard. In 2012, our hardness values were about 180 ppm (parts per million) which is equivalent

to approximately 10.5 GPG (grains per gallon). If you are setting up a dishwasher, water softener, or other appliance requiring you to indicate the hardness/softness of your water, these are the values you should use.

Information

For more information on this report, call Tom Kennedy, Olivenhain Municipal Water District Operations Manager, at **760-445-0000**.

muy importante sobre su aqua potable. Tradúzcalo o hable con alquien que lo entienda bien. Si tiene preguntas, llame a Naomi Sabino, teléfono 760-632-4648.

We Encourage You to Get Involved

We encourage public participation in decisions affecting your community's drinking water and any other water issues. Up to two Board of Directors meetings are held each month. Dates and times of these meetings vary, so please check **olivenhain.com** for current information. The public is welcome and encouraged to attend these meetings.

Municipal Water District

1966 Olivenhain Road Encinitas, CA 92024 760-753-6466 olivenhain.com

Published by Olivenhain Municipal Water District in the interest of an informed public.

Board of Directors

Lawrence A. Watt, President Christy Guerin, Vice President Edmund K. Sprague, Treasurer Gerald E. Varty, Secretary Robert F. Topolovac, Director

General Manager Kimberly A. Thorner, Esq.

General Counsel Alfred Smith, Esq.

Board Meeting Dates Please visit our website at

olivenhain.com for dates.

Mission Statement

Olivenhain Municipal Water District is a multi-functioning public agency that is dedicated and committed to serving present and future customers in a service-oriented manner by:

Providing safe, reliable, high-quality drinking water while exceeding all regulatory requirements in a cost-effective and environmentally responsive manner.

Recycled Water

Providing recycled water and wastewater treatment in the most cost-effective and environmentally responsive method.

Parks

Safely operating the Elfin Forest Recreational Reserve and providing all users with a unique recreational. educational, and environmental experience.

Emergency Management

Complying with policies and procedures that adhere to local, state, and federal guidelines for national security and disaster preparedness.

Sustainable Operations

Pursuing alternative and/or renewable resources with the most sustainable, efficient, and cost-effective approach.

For Additional

Este informe contiene información

